Design Patterns for Embedded
Systems in C

INCLUDES

FREE
NEWNES ONLINE
MEMBERSHIP

Bruce Powel Douglass, Ph.D.

www.bruce-douglass.com
Bruce.Douglass@outlook.com
Twitter: @lronmanBruce

DESIGN PATTERNS For
EMBEDDED SYSTEMSinC

An Embedded Software Engineering Toolkit

Use the hard-won experiences of others to create
embedded systems using design pattems

u Shows how to cut development time ost, and
increase speed and reflabllity through

Ready-to-go techniques that you can start to use immediately,
including companion web site with code snips

° Bruce Powel Douglass

© 2019 Bruce Douglass

mailto:Bruce.Douglass@outlook.com

Analysis vs Design

Analysis is the identification

¢ b .
be“- & specification of properties

peme™ of a system that are

essential for correctness

Design is the selection

P of one particular solution
be“ which optimizes the set
Remem of design criteria with

respect to the relative
importance of each

2 © 2019 Bruce Douglass

Harmony ESW Workflows

Hand off from

Systems
Engineering

!

Product
Backlog

1l
|

|

Aglle for Embedded Software Development

Nanocycle
(Hour)

Iteration
(Month)

Release
Backlog
Potentially Shippable
____ Product Increment
-
M Reration Iteration

o Retrospective

TATASN

Customer Liaison Practices

Project Management Practices

Quality Assurance Practices

Safety, Reliability & Security Practices

© 2019 Bruce Douglass

Harmony ESW Wor

kflows

Systems Engineering O3
3\/ &5

Preiteratio

Preparation for
Downstream
Engineering

n Planning Define and Deploy the
Development Environment

&5

Develop Requirements

(O
]
QA Audit
(=
5
Configuration
] :j My T Management
L5 o L5
Control Project Development Manage
tteration Change

© 2019 Bruce Douglass

Development Iteration

Produces models, source code, and
resulting object software in an incremental
fashion, typically every 1-4 weeks.

Systems Engineering

O
&5
Preparation for
Downstream

Engineering

S

= =7

Preiteration Planning Define and Deploy the Develop Regquirements

Development Environment /

&5
Configuration
. - S Management
EE 2 B3 i
I3 =S s
Control Project Development Manage
lteration Change

B3
L 2
Plan teration

Define lteration Software Requirements

High-Fidelity Modeling
O
2]

Architectural Design - RT E__}ﬂ

Prepare for Verification
and Validation

(T3
] 3
D3
Collaboration Design - e
RT __>_4
l Continuous Integration
[T T3
L5
Detailed Design -
RT

Requirements-
based Testing

—ra

5]

Execute V8V Test
[Critical Error] \> [Eise] L_\t:}"

Perform Retrospective

@—

High-Fidelity Modeling

Produces an “analysis” model and
code of the software: demonstrably
functionally correct but not optimized Benicyi

Each loop is
typically 20 - 60 “
minutes in
duration

Plan lteration
o3
o Sl
Define lteration Software Reguirements
N S o8
Identify software elements Develop test cases [more requirements]
&3
High-Fidelity Modeling
4 @
5 v :
Architectural Design - RT o [all requirements implemented]
&5
Prepare for Verification
‘_C_j and Validation |__\
LLS e o
Collaboration Design - l—:)‘j < r\?}

i Continuous Integration Refine Collaboration

l Make Change Set
puym.] Available
e [‘

Detailed Design - EE— 0

i Lo Bl [stable and usable]
l [else]

<

Requirements-
based Testing

l L&

=t] Run Tests Fix Defects
| 2
Execute V&V Test [defec(]
[Critical Error] [Eise] r{}‘ [8. < i, Lé
Perform Refrospective Al OCoR Perform Coverage
Analysis

6 © 2019 Bruce Douglass

Design Workflows

Produces a “design” model and code of the o The scope is
software: demonstrably functionally correct rossisarsidg
and optimized against the selected criteria at

the identified level of abstraction. =)

)
T Define Criteria and Scope
&5
Plan keration |_C_‘ |
oy —— 75
E— f:;J —_—
Define Reration Software Requirements Design and Optimize -
l Architectural Level

High-Fideltty Modeling
o= N ----~ R

’ [E N

i &5 \
]

: Architectural Design - RT 1 “Lf |

1 1 & ‘;"J
]

! | Prepare for Verification

: TS 1 and Validation

1 l: 3| !

' Collaboration Design - &5

1 RT] b

1] Continuous Integration
]

. I

-]

1 (s]

i &5 !

1

I Detailed Design - !

\ RT !

\ i /

B

Execute VAV Test
[Critical Error] [Else] [—‘}

Perform Retrospective

©<—

&5

Translate and Verify -
Architecture Level

=

Perform Review

®

© 2019 Bruce Douglass

Design Workflows

Define Criteria and Scope

The scope is
determinedby the
teration mission

Design and Optimize -
Architectural Level

Identify and Rank Define Scope

Review Scope and
Design Criteria

Ca &
Design Criteria
S

Translate and Verify -
Architecture Level

C

Perform Review

®

Translate Develop Test Plan
o
Verify Architecture

Not necessarily all the
viewpoints are present in
each iteration

Ar Chite
Ctu La
re-specifi o Co L&
ize Subsystems an = s
2 Optimize Concurrency Optimize Deployment
Component fuchitecture Architecture Architecture
o &
Optimize Distribution Optimize Dependability
Architecture Architecture
I La

Optimize Secondary
Architectural Views

& &

© 2019 Bruce Douglass

Levels of Design

OPTIMIZATION OF INDIVIDUAL

FUNCTIONS, DATA STRUCTURES, AND DETAILED
CLASSES
COLLABORATION-WIDE
COLLABORATION

OPTIMIZATION

SYSTEM-WIDE
OPTIMIZATION

ARCHITECTURE

FUNCTIONALLY

ANALYSIS
CORRECT

© 2019 Bruce Douglass

Common Design Optimization Criteria Drives Pattern Selection

= Simplicity
= Performance - - Memert —
- %m] [P—P
— Average o Elowe loe T
Bk SEsEEE
— Worst-case

— Predictability
— Schedulability
» Resource usage
— Robustness
— Thread safety
— Minimization of resources (space)
— Minimization of resources (time)
— Deadlock avoidance
= Safety
= Reliability
= Security
= Reusability
= Portability
= Extensibility & evolvability
= Maintainability
» Time-to-market
= Standard conformance

10 © 2019 Bruce Douglass

Design Patterns

= Design patterns are

— generalized solutions to recurring optimization problems

— Parameterized collaborations of objects, where the object roles are the formal
parameters and the objects that play those roles are the actual parameters when the

pattern is instantiated
» Patterns provide 2 kinds of elements

— “Glue” classes that coordinate the elements work together
— “Formal parameters” classes that are replaced by elements from the analysis model

» Important aspects
— Applicability
— What it optimizes
— Solution
— Consequences
* Pros
 Cons

Design Patterns
Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

" “The classic text”

3= GoF Categories:

— Creational
— Structural
— Behavioral

DESIGN PATTERNS ror
EMBEDDED SYSTEMSinC

An Embedded Software Engineering Toolkit

Bruce Powel Douglass ‘

= Harmony Categories:

Creational
Structural
Behavioral

State Behavioral
Distribution
Dependability
Deployment

Concurrency &
Resource

© 2019 Bruce Douglass

Example Analysis Model Collaboration

Optimization Criteria:

1. Ease of adding new TextView (and other) clients
2. Efficient use of bus bandwidth (only send data on bus when necessary)

.
Analysis Model

OpticalSensor

E speed:double
E wheeDiameter:int

1

TrainSpeed
E speed:doubk

*

TextView

E computeSpeed():vod

itsOpticalSensor §1 itsOpticalSensor §1
itsADConverter |1 tsHighPassFiter |1
ADConverter HighPassFilter

E cornerFreq:doublke

E detectMark():void E fitter (value:doubke): double

itsOpticalSensor

E getSpeed():void

itsSpeedController

its T extView

SpeedController

E commandedSpead:doubke
E measuredSpeed:double

E setEngneGear():void
E setEngne RPM(): void

E fontSize:unsigned char
E xPos:unsigned int

E displayVale(value: double): void

12

© 2019 Bruce Douglass

Selecting Patterns using Design Tradeoff Analysis

Design Design Criteria Total Weighted
Solution Execution | Maintainability Run-time Memory Score
Efficiency Flexibility Usage

Weight= |7 | Weight= |5 Weight= |4 | Weight= |7

Score Score Score Score
Client 3 7 8 5 123
Server
Push Data 8 4 7 9 167
Observer 8 7 9 9 190
Pattern

13 © 2019 Bruce Douglass

Design Pattern: Observer Pattern Specification

NotificationHandle AbstractSubject AbstractObserver
E updateAddress: AddressType *
P 1
] _— P - E notify():void
itsNofificationHandle E subscribe(a:AddressType) :void itsSubject
o getUpdateAddress():AddressType - unsubscribe(a:AddressType):void update():void
E setUpdateAddress(a: AddressType) :void
e _—_— T — -
s ™ \ ConcreteSubject ConcreteObserver
f/ Observer Pattern \
(aka Publish-Subscribe) T
Y / e “ -
N / o - -
ST Pattern formal parameters

14 © 2019 Bruce Douglass

Design Pattern: Observer Pattern Instantiation

PatternLibrary::NotificationHandle

E updateAddress: AddressType

PatternLibrary::AbstractSubject

1
- E notify():void
itsNotificationHandle] subsarbe(a:AddressType):void tsSubject

E getUpdateAddress(): AddressType E unsubsaribe(a:AddressT ype):void

E setUpdateAddress(a: Address Type):void
-
Design Model
(pattern applied)

OpticalSensor TrainSpeed

E speed:double - E speed:double
k= wheelDiameter:int itsOpticalsensor E xPos:unsigned int

E computeSpeed() void

itsOpticalSensor §1 itsOpticalSensor §1
itsADConverter |1 tsHighPassFiter |1
ADConverter HighPassFilter

E cornerfFreq:double

& deteatMark():void E filtter(value:double) :double

PatternLibrary::AbstractObserver

E update():void

TextView

k= fontSize:unsigned char

E getSpeed():void
ﬁ notify():void
ﬁ subsaibe(a:AddressT ype): void

E displayValve(value: double):void

ﬁ update():void

ﬁ unsubsaibe(a:AddressType) :void

O

MNote removal of associations
between TrainSpeed and clients,
since they are subsumed by the
relation between AbstractClient
and AbstractSubject

SpeedController

E commandedSpead: double
k= measuredSpeed: double

E setEngineGear() :void
E setEngineRPM(): void
E update():void

15

© 2019 Bruce Douglass

Why Use Design Patterns?

Reuse effective design solutions

Provide a more powerful vocabulary of design concepts to developers
Develop “optimal” designs for specific design criteria

Develop more understandable designs

16 © 2019 Bruce Douglass

How to Apply Design Patterns

99
ES
1
il

f
i
y
[

» Construct a analysis model that verifiably meets the functional requirements

» This analysis model need not be optimized but it needs to be verifiably correct
— This includes code generated from that design

» |[f any optimizations are needed, optimize for simplicity

[=
Analysis Model
OpticalSensor rainSpeed TextView
= speed:double = speed:double = fontSe:unsgned o
= vheeDameter:nt Ov sTextien - = Posiunsgned it
= computeSpesd(yvod - eed): s dsplayabve (value: double):
esOpticaSensar § tsOptiatsensor
nnnnnnnnnnnnn
EsADConverter | 1 RsHighPassFier SpeedControlier
ADConverter HighPassFilter = commandedSpead:double
B comerfrecdoute = measuredspeed: double
| setEngneGear ():void
= detectMark(Jvod o fter(vaie:doubl) double e setfngneRPH():vod

© 2019 Bruce Douglass

How to Apply Design Patterns

= |dentify the top 3-8 criteria (AKA Measures of Effectiveness (MOES)) you want to optimize
» Rank them in order of importance from 1 (lowest) to 10 (highest)

Execution efficiency
Maintainability
Run-time flexibility

U S, BEEN

Memory usage

18 © 2019 Bruce Douglass

How to Apply Design Patterns

» Perform a weighted-sum analysis of the design alternatives

i

» Select the design patterns that best optimize your system overall

Design Design Criteria Total Weighted
Solution Execution | Maintainability Run-time Memory Score

Efficiency Flexibility Usage

Weight= | 7 | Weight= | 5 Weight = Weight= |7
Score Score Score Score

Client 3 7 8 5 123
Server
Push Data 8 4 7 9 167
Observer 8 7 9 9 190
Pattern

19

© 2019 Bruce Douglass

How to Apply Design Patterns

» Add in the design pattern, substituting your analysis elements for the parameters of the
pattern and adding the glue elements to orchestrate their collaboration

» This is likely to require some refactoring

20

Noteationantie

I TS m——

L oeame ety asaresmiipe
[Fpe———————

! Cosarver Patem
[Rregrtce]

Sater gt

PatternLibrary::NotificationHandle

= updateAddress: AddressType

S ——

& getUpdateAddress(): AddressType

= setUpdateaddress(a:AddressType) void

(=]
Design Model
(pattern applied)

| OpticalSensor

= speed:double
= wheelDiameter:int

Patternlibrary::AbstractSubject |

1
= notify:void z

] subscrbe(a:AddressType):void | tssibfect

= unsubsaibe(a:AddressType):void

/
/
/
/
/
/

Patternibrary::AbstractObserver

= update():void

—

: TrainSpeed ‘

TextView

= speed:double

1
"~ itsOpticalSensor

| computespeed():void

e == A
itsADConverter |1 itsHighPassfiter |1
[T T

= comerFreg:double

5 detecMark(:vod = fitter(value:double):double

[getspeed():void

41 notify():void

%] subsabe(a:AddressType):void
4] unsubsaribe(a:AddressType):void

Note removal of associations

between TrainSpeed and clients,

since they are subsumed by the
relation between AbstractClient
and AbstractSubject

=] fontsize:unsigned char
= xPos:unsigned int

= displayValve(value: double):void
4] update():void

SpeedController |

= commandedspead: double
= measuredSpeed:double

I setEngineGear():void
= setEngineRPM():void
& update():void

© 2019 Bruce Douglass

How to Apply Design Patterns

» |t used to work (remember the “verifiably correct” aspect of the analysis model?)

» Verify that it still works

‘ | [| [o | [cee | l
‘ oirin | o] b | e | o
i,d ‘ Mn\‘um ‘ E;U ‘ m— ‘ | [z(l‘hux — -A‘
] i | = |
| == T
18 _— |
Test case Test architecture

21

Test Case Result
Test Case: SunnyDayTestCase
17:28:53, Tuesday, March 09, 2010

Test outcomes

Test verdicts

© 2019 Bruce Douglass

How to Apply Design Patterns

b

) =l L
Nene [

iy

i
(e =
)
Z('.
o~

» You applied this design pattern for a reason. Did you achieve your goal?
— Is the performance improvement adequate?
— Is the memory usage small enough?
— Is the system more maintainable?
— Is the run-time flexibility adequate
— Does it meet the safety / security / reliability goals?

22

© 2019 Bruce Douglass

What’s special about Embedded Systems?

Resource constraints

— Most embedded systems are far more highly constrained in available memory, CPU
cycles, and other resources

— Embedded systems must often interface with custom hardware and create their own
device drivers

— Small embedded systems run with a bare bones RTOS or no OS at all
— Most embedded systems are implemented in C
Predictability and timeliness are often crucial to success
Often require high dependability
— Safety
— Reliability
— Security

Design patterns for embedded applications provide reusable effective solutions to these
concerns

23 © 2019 Bruce Douglass

Design Patterns for Embedded Systems

= Many categories are possible for design patterns for embedded systems. We’'ll use the

following

— Accessing hardware
— Concurrency and resource management
— State Machine implementation and usage

— Safety, reliability, and security

— Distribution and communications
— Organization (e.g. layering) of subsystems
— Reuse and product lines

24

DOING HARrD TIME

DEVELOPING REAL-TIME
Systems with UML, OBJECTS,
FRAMEWORKS, AND PATTERNS

BRUCE POWEL DOUGILASS

Foreword by Grady Booch

JHEAL-TIME DESIGN
PATTERNS

ROBUST SCALABLE ARCHITECTURE
FOR REAL-TIME SYSTEMS

BRUCE POWEL DOUGLASS o
eeEe s e e

DESIGN PATTERNS For
EMBEDDED SYSTEMSinC

An Embedded Software Engineering Toolkit

Bruce Powel Douglass
9

© 2019 Bruce Douglass

A note about design patterns in C

= Almost all design pattern books assure object oriented implementation in Java, C++, C# or
similar languages

» Three styles for implementing patterns in C
— File-based

» This is “standard” C in which the application source code is organized into pairs of files
(header and implementation). Not all common patterns are easy to implement in this
style. This style organizes files around “class” concept but it’s all vanilla C.

— Object-based
» This approach uses structs to represent the classes (instances of which comprise the
objects) and manually name mangled functions manipulate the data stored in the struct.
Especially useful when there will multiple instances (variables) of a class or type.
— Object-oriented
» This style is similar to object-based except that the struct itself contains function
pointers as a means to implement polymorphism and virtual functions, something

required for implementing some patterns (those that require inheritance or
polymorphism)

o5 © 2019 Bruce Douglass

Classes represented as Filesin C

» This is just a way to graphically i B /Heade_rllmplementatlon
visualize “standard C” file pair
= A file pair (*.h and *.c) lumps Etesﬂ(,
Reset()
together 8 evCancel(__— event receptor
— Variables Btest2) m——— |
Rtest3()
— Event types
— Functions (including state \\ y
. . . «usage» .
machine implementations) G variable
- Types and typedefs Securi:\iggpervisor %/
— Preprocessor declarations H renesT i
in-char © Display
— «File» shows that the “class” B jin:cha %l 20]
IS representing the contents o pr——— «Usages 7
of a header/implementation =i P & displayMsg(msg-char”)void
file pair EisENTER(c:char):int
o _ & isCANCEL(c:char):int
— «Usage» indicates “include EisRESET(c:char):int
the header file” unIockDoor():_void
& lockDoor{):void .
EisValid(s:char*):int funCtlon
& addKey(c:char)-void

26 © 2019 Bruce Douglass

C Object Based Design (header file)

* The me pointer points to instance data (supports multiple instances of class)

Sensor

#ifndef Sensor H

; ADConverter
. value:int
tdefine Sensor H H ; ’
) — {= updateFrequency:int
#include "ADConverter.h" I filterFrequency:int myADConverter
(20 Init() & getvalue()int
/* class Sensor */ & getvalue(y:int
typedef struct Sensor Sensor; = getFilterFrequency ()int

[setFilterFrequency(p_filterFrequency:int):void
[getUpdateFrequency():int
E setUpdateFrequency(p_updateFrequency:int).void

struct Sensor {
int filterFrequency;
int updateFrequency;

int value;
ADConverter* myADConvert; /* association implemented as ptr */

Q;

int Sensor getFilterFrequency(const Sensor* const me);

void Sensor setFilterFrequency(Sensor* const me, int p filterFrequency);
int Sensor getUpdateFrequency (const Sensor* const me);

void Sensor setUpdateFrequency (Sensor* const me, int p updateFrequency);

int Sensor getValue (const Sensor* const me);

Sensor * Sensor Create(void);

void Sensor Destroy(Sensor* const me);
#endif

27 © 2019 Bruce Douglass

C Object Based Design (implementation file)

#include "Sensor.h"

int Sensor getFilterFrequency (const Sensor* const me) {
return me->filterFrequency;

}

void Sensor setFilterFrequency(Sensor* const me, int
p filterFrequency) {
me->filterFrequency = p filterFrequency;

}

int Sensor getUpdateFrequency (const Sensor* const me) {
return me->updatefFrequency;

}

void Sensor setUpdateFrequency (Sensor* const me, int
p updateFrequency) {

/* Constructor and destructor */
me->updateFrequency = p updateFrequency;

Sensor * Sensor Create(void) {
Sensor* me = (Sensor *) malloc (sizeof (Sensor)) ;
if (me!=NULL)
{

}

int Sensor getValue (const Sensor* const me)

return me->value; Sensor Init (me);

))

return me;

void Sensor Destroy(Sensor* const me) {
if (me!=NULL)
{

Sensor Cleanup (me) ;
}
free (me) ;
28

C Object Oriented Design (header file)

» The function pointers support polymorphism and virtual functions

#ifndef Sensor H
#define Sensor H
#include "ADConverter.h"

/* initialize function ptrs in constructor */
void Sensor Init (Sensor* const me) {

me->getFilterFreq = getFilterFrequency;
me->setFilterFreq = setFilterFrequency;

r
/* function pointers */

typedef int (*fOptrInt) (void*);
typedef void (*flptrVoid) (void*, int);

.

/* class Sensor */
typedef struct Sensor Sensor; *‘\
struct Sensor {
int filterFrequency;
int updateFrequency;
int value;
ADConverter* myADConvert; /* association implemented as ptr */
fOptrInt getFilterFreq; /* ptr to the function w only me ptr argument */
flptrVoid setFilterFreqg; /* ptr to function with me ptr and int args */

\’ J
int getFilterFrequency(const Sensor* const me);
Void setFilterFrequency (const Sensor* const me, int ff);

Sensor * Sensor Create(void); /* creates struct and calls init */
Void Sensor Init (Sensor* const me); /* intializes vars incl. function ptrs */

void Sensor Destroy(Sensor* const me);
#endif

29 © 2019 Bruce Douglass

Pattern: Hardware Adapter

Abstract

— The Hardware Adapter Pattern is useful when the application requires or uses one
interface, but the actual hardware provides another. The pattern creates an element that
converts between the two interfaces.

Problem

— While hardware that performs similar functions tend to have similar interfaces, often the
information they need and the set of services differ. Rather than rewrite the clients of the
hardware device to use the provided interface, an adapter is created that provides the
expected interface to the clients while converting the requests to and from the actual
hardware interface.

Solution

— Create a class that performs that mapping of the actual interface (provided by the
Hardware Proxy) and the interface required by the client

Consequences

— Allows reuse of existing hardware proxies in different applications and for different clients
without rewriting that software.

— This pattern adds a level of indirection and therefore some run-time performance
overhead

30 © 2019 Bruce Douglass

Pattern: Hardware Adapter

31

wlnterfaces
HardwarelnterfaceToClient

AdapterClient

HardwareProxy

& clientSenice()void
& clientSenvice2()void

& deviceAddrvoid *

i

& initialize()-void
& configure()-void
& access()void

& mutate()-void

& marshal()-void
&4 unmarshal()-void
& disable()-void

HardwareAdapter

E clientSenice1()-void
EclientSenice2()-void

1

«hardwarexs
HardwareDevice

- — — The Hardware Adapter

implements the client
senvices in terms of the
public services provided by
the Hardware Proxy.

© 2019 Bruce Douglass

Example: Hardware Adapter

Acme025ensorProxy 1
gimme02Flow returns flow in

co/minute.
AcmeOZAdapter gimmeQ2Caonc returns
concentration of 0 - 100.

& get0O2Conc()-unsigned int
& getO2Flow()-unsigned long

& gimme02Flow():int . |
| & gimme02Conc()int . |
| 2] |
. «interfacex 1 GasDisol
Acme sensor returns flow in i023ensor astispay
(CC/second)™00 and
concentration in 0 - 100 range. & gimmeO2Flow():int
& gimmeO2Conc()int ’
GasMixer
~
Ultimate sensor returns total UltimateO2Adapter o

combined flow in liters/hour and

concentration in 0.000 to 1.000

3 digits of accuracy. B gimmeO2Flow()int
| & gimme02Conc()int

I
UltimateO25ensorProxy

& access02Conc()-double
& accessGasFlow()-double

32 © 2019 Bruce Douglass

Sample Code: Hardware Adapter

int AcmeO2Adapter gimmeO2Conc (AcmeO2Adapter* const me) {
return me->itsAcmeO2SensorProxy->getO2Conc() ;

}

int AcmeO2Adapter gimmeO2Flow (AcmeO2Adapter* const me) {
return (me->itsAcmeO2SensorProxy->getO2Flow()*60)/100;

}

AcmeO2Adapter.c

int UltimateO2Adapter gimmeO2Conc (UltimateOZAdapter* const me) {

return int (me->getItsUltimateO2SensorProxy->access02Conc ()*100);

}

int UltimateO2Adapter gimmeOZ2Flow (UltimateOZAdapter* const me) {

double totalFlow;

// convert from liters/hr to cc/min

totalFlow = me->itsUltimateO2SensorProxy->accessGasFlow() * 1000.0/60.0;

// now return the portion of the flow due to oxygen and return it as an integer
return (int) (totalFlow * me->itsUltimateO2SensorProxy->accessO2Conc()):;

}

UltimateO2Adapter.c

33 © 2019 Bruce Douglass

Pattern: Mediator

Abstract

— The Mediator Pattern is particularly useful for managing different hardware elements when their
behavior must be coordinated in well-defined but complex ways. It is particularly useful for C
applications because it doesn’t require a lot of specialization (subclassing), which can introduce its
own complexities into the implementation.

Problem

— Many embedded applications control sets of actuators that must work in concert to achieve the
desired effect. For example, to achieve a coordinated movement of a multi-joint robot arm, all the
motors must work together to provide the desired arm movement. Similarly, using reaction wheels or
thrusters in a spacecraft in three dimensions requires many different such devices acting at precisely
the right time and with the right amount of force to achieve attitude stabilization.

Solution

— The Mediator Pattern uses a mediator class to coordinate the actions of a set of collaborating
devices to achieve the desired overall effect. The Mediator class coordinates the control of the set of
multiple Specific Collaborators. Each Specific Collaborator must be able to contact the Mediator
when an event of interest occurs.

Consequences

— This pattern creates a mediator that coordinates the set of collaborating actuators but without
requiring direct coupling of those devices. This greatly simplifies the overall design by minimizing the
points of coupling and encapsulating the coordination within a single element.

— Since many embedded systems must react with high time fidelity, delays between the actions may
result in unstable or undesirable effects. It is important that the mediator class can react within those
time constraints.

34 © 2019 Bruce Douglass

Pattern: Mediator

Mediator

wlnterfaces
Collaboratorinterface

SpecificCollaboratar

35

© 2019 Bruce Douglass

Example: Mediator

36

Action

= rotatingArmJoint1:int
= rotatingArmJoint2:int
= rotatingArmJoint3:int
= rotatingArmJoint4:int
= slidingArmJoint1:int
= slidingArmJoint2:int

Example of the Mediator Pattem

100

= manipulatorForce:int
= manipulatorOpen:int

RobotArmManager

= nSteps:unsigned int
= currentStep:unsigned int
= status:int

zinterfaces

iRotatingJoint

@ rotate(x:int):void
& getRotation():int

& graspAt(cint, y:int z:int tint)int

@ computeTrajectory(x:int,y:int, z:int tint):void

@ executeStep()int
& zero(Jint

& zero():void
kN
RotatingArmJoint alnterfaces
islidingJoint
= angle:int
= devicelD:char
& move():void
& getRotation():int & getPosition()int
4~ Hrotate(xint)int & zero()void
& zero()int P

il

SlidingArmJoint

GraspingManipulator

= devicelD:char
= maxForce:int=0

& open()int

& close()int

& setMaxForce(mint):int
& getClosure():int

= currentLength:int

= devicelD:char

= minArmLength:int
= maxArmLength:int

& getLength():int
& setLength(x:int):int
& zero():int

© 2019 Bruce Douglass

Example: Mediator

37

!

me-=currentStep = -1;
me-=nSteps = 0;
RobotArmManager_zero(me);

l

nSteps == 0 indicates goal RobotArmManager_computeTrajectory(me.x,y.z.t);]

Flowchart for grabAt(x,y,z.t);

is not achievable

e
.
e
Q me-=status = -1 .
[me-=nSteps == 0]
T

return me-=status; ¥
(me-=curmentStep++; }

L

T[me-}status ==0 && me-=currentStep < me-=nSteps]

[me->status = RobotArmManager_executeStep(me); j

© 2019 Bruce Douglass

Source Code: Mediator (RobotArmManager.h)

#ifdef ROBOTARMMANAGER H
#define ROBOTARMMANAHER H
#include "GraspingManipulator.h"
#include "RotatingArmJoint.h"
#include "SlidingArmJoint.h"
#include "Action.h"

ﬁclass RobotArmManager */ \
typedef struct RobotArmManager RobotArmManager;

struct RobotArmManager {

unsigned int currentStep;

unsigned int nSteps;

struct GraspingManipulator* itsGraspingManipulator;
struct RotatingArmJoint *itsRotatingArmJoint[4];
struct SlidingArmJoint *itsSlidingArmJoint([2];

struct Action *itsAction[100]; /* set of actions to perform to execute the planned trajectory */

\ int status; /

/* Constructors and destructors:*/

void RobotArmManager Init (RobotArmManager* const me);

void RobotArmManager Cleanup (RobotArmManager* const me);

/* Operations */

void RobotArmManager computeTrajectory(RobotArmManager* const me, int x, int y, int z, int t);
int RobotArmManager executeStep (RobotArmManager* const me);

int RobotArmManager graspAt (RobotArmManager* const me, int x, int y, int z, int t);

int RobotArmManager zero (RobotArmManager* const me);

struct GraspingManipulator*

RobotArmManager getItsGraspingManipulator (const RobotArmManager* const me);

38 © 2019 Bruce Douglass

Source Code: Mediator (Action.h)

#ifndef
#define

Action H

Action H

/* class Action */

typedef struct Action Action;

struct Action {

int
int
int
int
int
int
int
int

}s

/* Constructors and destructors */

void Action Init (Action* const me);

manipulatorForce;
manipulatorOpen;
rotatingArmJointl;
rotatingArmJoint2;
rotatingArmJoint3;
rotatingArmJoint4;
slidingArmJointl;

slidingArmJoint2;

/*
/*
/*
/*
/*
/*
/*
/*

void Action Cleanup (Action* const me);

Action * Action Create(void);

void Action Destroy(Action* const me);

#endif

39

attribute
attribute
attribute
attribute
attribute
attribute
attribute

attribute

manipulatorForce */
manipulatorOpen */

rotatingArmJointl */
rotatingArmJoint2 */
rotatingArmJoint3 */
rotatingArmJoint4d */
slidingArmJointl */

slidingArmJoint2 */

© 2019 Bruce Douglass

Source Code: Mediator (RobotArmManager.c graspAt())

/* operation graspAt(x,y,z,t) is the main function called by clients of the RobotArmManager.

1. zeros the servos

2. 2. computes the trajectory with a call to computeTrajectory ()

3. executes each step in the constructed action list

*/

int RobotArmManager graspAt (RobotArmManager* const me, int x, int y, int z, int t) {
me->currentStep = 1;
me->nSteps = 0;

RobotArmManager zero (me);

RobotArmManager computeTrajectory(me,x,y,z,t); /* updates nSteps and list of actions */
if (me->nSteps ==) A

me->status = -1;

}
else {

do {

me->currentStep++;
me->status = RobotArmManager executeStep (me);
}
while (me->status == 0 && me->currentStep < me->nSteps);
}
return me->status;

} /* end graspAt() */

40

This operation:

© 2019 Bruce Douglass

Source Code: Mediator (RobotArmManager.c executeStep())

#include "RobotArmManager.h“

/* other functions omitted */

/* operation executeStep() This operation executes a single step in the chain of actions by executing all of the
commands within the current action */

int RobotArmManager executeStep (RobotArmManager* const me) {
int actionvValue = 0;
int step = me->currentStep;

int status = 0;

if (me->itsAction[step]) {
actionValue = me->itsAction[step]l->rotatingArmJointl;

status = RotatingArmJoint rotate(me->itsRotatingArmJoint[0],actionValue);

if (status) return status;

actionValue = me->itsAction[step]->rotatingArmJoint2;

status = RotatingArmJoint rotate (me->itsRotatingArmJoint[1l],actionValue);
if (status) return status;

actionValue = me->itsAction[step]->rotatingArmJoint3;

status = RotatingArmJoint rotate (me->itsRotatingArmJoint[2],actionValue);
if (status) return status;

actionValue = me->itsAction[step]->rotatingArmJoint4;

status RotatingArmJoint rotate (me->itsRotatingArmJoint[3],actionValue);

status GraspingManipulator setMaxForce (me->itsGraspingManipulator, actionValue);

a1 © 2019 Bruce Douglass

Source Code: Mediator (RobotArmManager.c executeStep())

42

if (status) return status;

actionValue = me->itsAction[step]->slidingArmJointl;

status = SlidingArmJoint setLength(me->itsSlidingArmJoint[0],actionValue);

if (status) return status;

actionValue = me->itsAction[step]->rotatingArmJoint2;

status = SlidingArmJoint setLength(me->itsSlidingArmJoint[0],actionValue);

if (status) return status;
actionValue = me->itsAction[step]->manipulatorForce;
if (status) return status;
if (me->itsAction[step]->manipulatorOpen)
status = GraspingManipulator open (me->itsGraspingManipulator);
else
status = GraspingManipulator close (me->itsGraspingManipulator) ;
}i
return status;

} /* end executeStep() */

© 2019 Bruce Douglass

Five Key Views of Architecture

(Deployment
Identifies the engineering disciplines
involved, allocates system

defines interfaces that cross those
\bou ndaries

(Distribution
Focuses on the distribution of
services and semantic elements
across different processing nodes
and identifies how these elements

\collaborate

Component

(Subsystem & Component

of the system, their
responsibilities and their
\interfaces

43

Identification of large pieces

responsibilities to those disciplines and

= (Dependability
"l Focuses identification, isolation and

through management of redundancy.
Includes safety, reliability, & security

correction of faults as the system runs

~

J

Dependability

Key Harmony ESW
Architecture Views

Subsystem and |

J

SRR Concurrency & Resource

R | dentification of concurrency units
how semantic elements map to
them, how they are scheduled &
share resources

~

J

© 2019 Bruce Douglass

Five Key Views of Architecture

\/?\-
|| Deployment k’

Key Concept:

The system architecture Is a
iIntegration of patterns from
each key architectural view

o v
Subsystem and |) //
. Component : Concurrency

. and Resource
—

v

© 2019 Bruce Douglass

44

Concurrency Architecture Patterns

45 © 2019 Bruce Douglass

Task Diagram

= Atask diagram is a class diagram that shows only model elements related to the
concurrency model

— Active objects
— Semaphore objects
— Message and data queues
— Constraints and tagged values
= May use opaque or transparent interfaces

46 © 2019 Bruce Douglass

Task Diagram

Priority = 2;
Period = (10, 'ms’);
Deadline = (5, 'ms’); ~

Y

1 itsControlThread

1 itsDataAcquisitionThread

1 itsO25ensor

& controlLoop

1

itsFlowSensor

1 itsPressureSensor

Priority = 10;
_~Period = (500, 'ms’);
e Deadline = (500, 'ms’);

pActuation
pControl
1 “tsActuationThread
1 its02Valve

& open(xint)void

yJ—‘ 1 itsFlowWalve
p02 preSST pF|0'II'.I' LIJ— 1 #TESOUICER
itsDataBase)
& setFlow(x:unsig. ..
= 02Concentation
o = gasFlow p -
:iurity =8; B pressure —
Period = (250, 'ms’); -
Deadline = (250, ms); | Egeigggm EtumOn()void
. ﬁ;stGESEESW & turnOff{)-void . .
] r———— 5 sotGasFlow & setRate(pRate:int):void
HgetPressure i
& setPressure \
1 itsScalarDisplay]
Priority = 8;
& show\/alue(paramMame-double valueint)void 1 itsBuiltinTestThread Period = (250, 'ms’);
Deadline = (100, ‘ms’);
s 1 : o status (}
itsSemaphore
1 its\WaveformDisplay @ TestMaster ™~
Hlock & memoryTest
Hrelease EdeviceTest Priority = 100:
- : [0Test Period = (120, ')
ﬁShDWD_ataF_'t(vaIue:lnt}:v_old & stackTest Deadline = (120, 's’);
& showTitle(title-char*)-vaid S heapTest

47 © 2019 Bruce Douglass

Task Scheduling Patterns

Priority-based preemptive

Highest priority task not blocked runs preferentially
May be static (priority assigned at design) or dynamic (priority assigned at run-time)

Non-preemptive

Round robin executes tasks in turn
May require “cooperative multitasking”

Time Driven Multiplexed Architecture (TDMA)

Each task is given a specific time-slice in a round-robin fashion

Cyclic executive

Run a set sequence in a particular order
Each task runs to completion

Interrupt

48

No scheduling per se, just a set of interrupt handlers
Requires that handlers are short (relative to arrival frequency) and atomic

T

)

I

\

PATTERNS

ROBUST SCALABLE ARCHITECTURE
FOR REAL-TIME SYSTEMS

BRUCE POWEL DOUGLASS

FAL-TIME DESIGN

© 2019 Bruce Douglass

Cyclic Executive Pattern

» Problem
— Need for a simple means to execute a known, finite set of task, or
— You want to simplify safety certification
= Solution
— Have each task run-to-completion
— Use an executive to order the task execution
= Consequences
— Very simple implementation
— Demonstrably suboptimal in terms of time to respond to incoming events
— Applies best to simple task sets that run to completion
— May require tuning

49 © 2019 Bruce Douglass

Cyclic Executive Pattern

CyclicExecutive

ainterfaces

AbstractCE Thread

& controlLoop()void

& run()-void

0.1

L

CycleTimer

ConcreteCEThread

= cycleTime:unsigned long

& start()-void
& stop()-void
& hasElapsed():unsigned char

This timer is only needed for the Timed Cyclic Executive variant

which starts the cycle on a specific time period

50

© 2019 Bruce Douglass

Cyclic Executive Pattern Example

aFiles

zasDisplayThread

Cyclic Executive Example. 1

The controlLoop() function calls

each of the run() services in :
turn. The timer indicates when & GasDisplayThread_run()

to start the next cycle with its

hasElapsed() function.
1
sFiles sFilzs wFiles
5asControlExecutive GasActuatorThread SharedData

M commandedGasFlow
= measuredGasFlow

& GasActuatorThread_run

& controlLoop

1
Fil nél «Filew
wrllEn
GasControlEpochTimer 1 easiEnaar niead
M cycleTime
™ clapsed
& GasSensorThread _run
& epochTimerHasElapsed
& stattEpochTimer
& stopEpachTimer

51 © 2019 Bruce Douglass

Interrupt Pattern

Problem

— You want to process events from external sources, including hardware
Applicability

— Events come at non-predictable intervals and polling would be ineffective
Solution

— Write a device driver that in its constructor inserts the address of an interrupt function
into the CPU interrupt vector table and in its destructor restores the previous vector

— Care must be taken in C++ (use static functions)
Consequences
— Easy implementation
— Highly responsive to incoming events
— Interrupt handles must be short or high frequency events may be lost
— Care must be taken to avoid deadlock when ISR updates a protected shared resource

52 © 2019 Bruce Douglass

Interrupt Pattern

Interrupt Pattern

uFilex

InterruptHandler
™ oldVectors vectorPtr oldVectors[TABLE_SIZE]

«Filex

Interrupt\ectorTable = install()-void

™ ISRAddress-vectorPtr ISRAddress[TABLE_SIZE] 1 = deinstall()-void _
& cinterrupt» handlelnterrupt_1()-void

(-

& «interrupts handlelnterrupt_2()-void
(r
(r

& «interrupt» handleinterrupt_3()-void
1\ & «interrupt» handlelnterrupt_n{)-void

quagex-\ aUsages X

Yy -~ /
«Types ;L:_/-
vectorPtr The InterruptHandler file contains
as many interrupt handlers as it
needs to manage, typically one
handler per overridden vector.

void (*vectorPtr){void);

53 © 2019 Bruce Douglass

Interrupt Pattern Example

54

whws T
Button

uFilex

EobotInterruptVectorTable

= |ISRAddress:ButtonVectorPtr ISRAddress[10]

& push()-void
& release()void

allsagen

~f

w Typen

ButtonVectorPtr

typedef void ("ButtonVectorPtr){void);

LED

N
AN

alUsages

=

a TypeEn
ButtonVectarPtr

typedef void (*ButtonVectorPtr){void);

aFiles

ButtonHandler

H oldVectors:ButtonVectorPtr oldVectors[10]

& LightOn()-void
& Light Off{)-void

& install()-void

& deinstall{)-void

& «interrupts handleButtonPushinterrupt()-void

& «interrupts handleButtonReleaselnterrupt()-void

© 2019 Bruce Douglass

Static Priority Pattern

= Problem

— In a multitasking environment, need a set of rules to govern how ready-to-run threads
are scheduled

= Solution

— Use a static priority for each task and implement the rule that the highest priority task
ready to run preempts and runs preferentially

55 © 2019 Bruce Douglass

Static Priority Patten

= Consequences
— Supported by many RTOSes
— Can be statically analyzed for schedulability (e.g. RMA analysis)
— Easy to annotate UML thread model with the appropriate properties
* Priority
» Worst Case execution time
 Blocking time, etc.
— Scales to many threads well
— RMS is the most common instantiation
* RMS is OPTIMAL
* RMS is STABLE
— Naive implementation can lead to unbounded priority inversion

56 © 2019 Bruce Douglass

Static Priority Pattern

PriarityQueue StaticTaskControlBlock S
ac
™ priority-unsigned short :
= startAddress:void * 1 B baseAddrvoid *
§ insert(tcbPtr:StaticTaskControlBlock*):void & entryPoint-void * 1 | = top:int
& remove():StaticTaskControlBlock*
* | itsTCB 1
1 | itsReadyQueue 1 itsBlockedQueue =]
1 1 1 | —
1 mapp
StaticPriorityScheduler I
| ¢
| AbstractStaticThread
& createThread(startAddr:AbstractStaticThread® priority-unsigned short)-void I
/ & destroyThread(tchAddr: StaticTaskControlBlock*®):void %
Usually & blockThread(mutexID:int, entryPoint:void *)-void B run()void
Provided by & unblockThread(mutexID-int):-void '
RTOS ; : Z
«resourceEs E
Mutex SharedResource
= mutexID:int . s
& lock():void E
& release():void —
ConcreteStaticThread

57 © 2019 Bruce Douglass

Static Priority Example

Priority = 5;
Period = (50, ‘'ms’);

|
aFiles

MotorPositionSensor

= mps_priority
M mps_stack
M mps eventQueue

& getPosition
ﬁMDtanDsitiunSensnr_run

Hay it

Priority = 10;
period = {500, 'ms’);

«Files

MotorDisplay

Priority = 8;
Period = (100, ‘'ms’);

= md_priority
M md eventQueus
M md stack

aFilex
MotorController

M motoriPos

M motor2Pos

= mc_priority

M mc eventQueue
M mc stack

& display
& MatorDisplay_run
R Init

1

& maove

Hzero

& MotorController_run
i Init

aFiles

MaotorData

Static Priority Example

58

M commandedPosition
M measuredPosition

& getCmdPos
& getMeasPos
B setCmdPos
M setMeasPos

© 2019 Bruce Douglass

Safety and Reliability Patterns

Isolation Pattern
CRC Pattern
Smart Data Pattern @
Protected Single Channel Pattern Hones
Homogeneous Redundancy Pattern /
Heterogeneous Redundancy Pattern
Triple Modular Redundancy Pattern
Monitor-Actuator Pattern

[“

DESIGN PATTERNS Fror
EMBEDDED SYSTEMSinC

An Embedded Software Engineering Toolkit

Bruce Powel Douglass

59 © 2019 Bruce Douglass

CRC Pattern

= Problem

— This pattern addresses the problem that variables may be corrupted from a variety of
causes such as environmental factors (such as EMI, heat, and radiation), hardware
faults (such as power fluctuation, memory cell faults, and address line shorts), or
software faults (other software erroneously modifying memory). This pattern addresses
the problem of data corruption in large data sets.

= Solution

— The pattern adds cyclic redundancy checks to identify data corruption and trigger
appropriate action when it occurs

= Consequences
— CRC uses a small amount of memory for strong bit-corruption identification

— Table-driven implementations use additional block of memory to hold table but are
computationally efficient

60 © 2019 Bruce Douglass

CRC Pattern

61

aFunctions

computeCRC(data:char®, size:unsigned int,seed:int.final:int)-void

DataClient

28
|
|

CRCProtectedData

= CRC:unsigned int

H dataSet:DataType dataSet[MAX_DATA_ELEMENTS]:

| —

& updateData()-void
& getData()-void
& errorHandler()-void

alUsages
—_—
—_

DataType

© 2019 Bruce Douglass

CRC Pattern Example

CRCCalculator

M crc_tablecunsigned short crc_table[256];

i Init()

& computeCRC{data-unsigned char * length-size_t seed-unsigned short final-unsigned short)-unsigned shart

HositalPatientSystem

PatientData

DrugDeliverySystem

M pData:PatientDataType
H crc:unsigned short

aTypes
PatientDataType

Thermometer

i Init()

& setMame(n-char*)void

& getName().char*

& setPatientiD(id-unsigned long)-void
& getPatientID{)-unsigned long

& setWeight(w-double)void

NIBP

& getWeight():double

& setAge(a-unsigned short)void
& getAge()unsigned short

& setGender(g:GenderType)void
& getGender() GenderType

Blood02Sensor

& setSystalicBP(sBP:unsigned short)void
& getSystolicBP():unsigned short
& setDiastolicBP(dBP:unsigned short)void
& getDiastolicBP()-unsigned short

& setTemperature(t-unsigned short)-void

& getTemperature()-unsigned short

& setBlood02Conc(o2-unsigned short)void
& getBlood02Caonc()-unsigned short

E errorHandler(errCode:ErrorCodeType):void

AlarmManager

® name-char name[100];

M patientlD:unsigned long

= weight-double

M age-unsigned short

H gender GenderType

M systolicBP:unsigned short
M diastolicBP -unsigned short
H temperature-unsigned short
M heartRate:unsigned short

H bloedQ2Conc:unsigned short

| «Usages

xTypes
GenderType

SiMALE
@iFEMALE
¢ HERMAPHRODITE

aUsagen

& addAlarm(alarmCode:ErrorCodeType Jvoid
& announceAlarms()-void

«Usages

62

aTypen
ErrorCodeType

¢iNO_ERRORS

©i UNKNOWN_ERROR

¢i CORRUPT_DATA

¢ WEIGHT TOO_LOW

¢ WEIGHT _TOO_HIGH

©i AGE_TOO_HIGH

¢i GENDER_OUT_OF RANGE
¢ SYSTOLIC_TOO_LOW

¢i SYSTOLIC_TOO_HIGH

¢i DIASTOLIC_TOO_LOW

¢ DIASTOLIC_TOO_HIGH

¢ TEMPERATURE_TOO_LOW
©i TEMPERATIURE_TOO_HIGH
¢{BLOOD_02 TOO_LOW
¢BLOOD_02 TOO_HIGH

© 2019 Bruce Douglass

Smart Data Pattern

= Problem

— The problem this pattern addresses is to build functions and data types that essentially
check themselves and provide error detection means that cannot be easily ignored.

= Solution
— The key concepts of the pattern are to
 Build self-checking types whenever possible
« Check incoming parameter values for appropriate range checking
» Check consistency and reasonableness among one or a set of parameters.
= Consequences

— The downside for using smart data types is the performance overhead for executing the
operations.

— The upside is that the data is self-protecting and provides automatic checking when the
data is set.

— Itis also possible for the programmers to avoid using the functions and access the
values directly if they are so inclined, defeating the purpose of the smart data type.

63 © 2019 Bruce Douglass

Smart Data Pattern

Errorfdanager

SmartDataType

& handleError(errCode-ErrorCodeType)-void

| gllsages

ServerClass

M sdt-SmartDataType

& setValue(v-SmartDataType):ErrorCodeType
& getValue(): SmartDataType
A Init()

|
|
|
|
|
|
|
| Y
\l/ }J{UEEQEE
«Types
ErrorCodeType

©iNO_ERRORS

©iBELOW _RANGE

¢ ABOVE_RANGE
©:INCONSISTENT VALUE
©#ILLEGAL_USE_OF_MULL_PTR
©#INDEX_OUT_OF RANGE

64

&4 value-PrimitiveType

& lowRange:PrimitiveType

& highRange:PrimitiveType

& errorCode ErrorCodeType=NO_ERRORS

i Init(val-PrimitiveType _low:PrimitiveType _high:PrimitiveType _erfMgrPtr-ErrarlManager)
& checkValidity()-ErrorCodeType

& setValue(v-SmartDataType v) ErrorCodeType
& setPrimitive(p-PrimitiveType)-ErrorCodeType
& getPrimitive()-PrimitiveType

& getValue():SmartDataType

& errorHandler(errErrorCodeType)-void

& setLowBoundary(low:PrimitiveType Jvoid

& setHighBoundary(high:PrimitiveType):void

& getLowBoundary()-PrimitiveType

& getHighBoundary():PrimitiveType

& getErrorCode()-ErrorCodeType

& cmp(sdt: SmartDataType)int

& pCmp(sdt:SmartDataType)int

© 2019 Bruce Douglass

Smart Data Pattern Example

AlarmManager

Smartint

S addalarm(errCode:ErrorCodeType Jvoid 1

7

zlJsages

|
|
|
s

PatientDataClass

zlJsages

= name:char name[100];

= weightSmartint

= age:Smartint

= patientiD:long

= heartRate:Smartint

H foregroundColor.SmartColor
= backgroundColorSmanCalor

o Init{errMgrAlarmManager®)
& sethame(n:chart)void

S oetiame().char®

o setWeight(w:int)void

& oetWeight(int

B settge(azint)void

B oetdge(yint

H setHearnRate(hrint)vaid

S oetHeartRate()int
HsetFColorfcColorType Jvoid
HoetFColar():ColarType

B setBColor(bcCaolorType Jvoid
S aetBColor()ColorType

& checkallData(yErrarCodeType

& valuesint

& lowRange:int

&7 highRange:int

& errorCodeErrorCodeType=N0O_ERRORS

W Initfvaliint low:int high:int errMar:struct AlarmManager)
& checkvalidity():ErrorCodeType

B setvalue(s:Smartint ;ErrorCodeType
& setPrimitive(p:intyErrarCodeType

& getPrimitive(yint

B aetvalue();:Smartint
HerrorHandler(errErrorCodeType kvoid
& setLowBoundary(low:int)void

H setHighBoundary(high:intvoid

& oetLowBoundary(yint

& getHighBoundary()int

S oetErrorCode(ErmorCodeType

B cmp(s:Smartint yint
EpCmp(s:Smartint yint

aTypes
ErrorCodeType

$iNO_ERRORS
$i1BELOW_RANGE
$1ABOVE_RANGE
$1INCONSISTENT_VALUE
$1ILLEGAL_USE_OF_NULL_PTR
$HINDEX_OUT_OF_RANGE

aTypes
ColorType

$iBLACK
&iBROWN

SmanColor

@iRED

zlsages

& value:ColorType

&l lowRange: ColorType

& highRange:ColorType

.ﬁ errorCode.ErrorCodeType =NO_ERRORS

GiPINK
#iBLUE
i GREEN
SIYELLOW
S1WHITE

— _> i Initfval:ColorType low.ColorType high:ColorType errigr:struct AlarmManager)
& checkvalidity{yErrarCodeType

B setvalue(s:SmanColor ErrorCodeType
B setPrimitive(p:ColorType kEmorCodeType
& aetPrimitive(): ColorType

B oetvalue(;:SmanColor

B errortHandler{err:ErrorCodeType)void

& setLowBoundary(low: ColorType Jvoid

B setHighBoundary(high:ColorType Jvoid

B oetLowBoundary(y.ColarType
B oetHighBoundary(:ColorType
B oetErrorCode():ErmorCodeType
Eecmp(s:SmartColoryint
EpCmpis:Smartint yint

© 2019 Bruce Douglass

State Behavioral Patterns

WS R
= *.- - _.-_'-_. P
-t Ll o n-.—.:i'_ T h
1"‘““-»_, by .
N, ,:..':1-
Tt fn A

66 © 2019 Bruce Douglass

State Patterns

» Latch State Pattern

» Polling State Pattern

= Queued Data State Pattern

Any State Pattern

Transaction State Pattern
Counting Barrier State Pattern
Random State Pattern

Null State Pattern

Watchdog State Pattern
Retriggerable Counter State Pattern

67

D'OING HARD TIME

DEVELOPING REAL-TIME
Systems with UML, OBJECTS,
FRAMEWORKS, AND PATTERNS

BRUCE POWEL DOUGILASS

oy Grady Booch

© 2019 Bruce Douglass

Latch State Pattern

Problem
— You want to remember that an event has occurred so that you can process it later
Applicability
— When the event can come at any time, but the object may not be able to react to it
except at specific points
— When you want to remember that a state has been visited and use that information later
Solution
— Create a “latch” state to remember the arrival of the event of interest and clear the latch
when the object has consumed it
Consequences
— Itis a lightweight means to synchronize to independent behaviors when a latching
condition is required.

— Other kinds of latches may be constructed. For example, an inhibitory latch (a latch
which, when active, inhibits the progress of an independent activity) can be easily
constructed by applying a NOT operator (e.g. ['IN(Latched))]) within the guard condition.

68 © 2019 Bruce Douglass

Latch State Pattern

LatchStatePattern
~ n
Fredicate
| Continuingstate
| Frepredicatestate | ‘ ‘
‘ o1/GEN(eventToLatch)
| FredicateState |
[O8
Latch State Pattern ‘
Latch
LInlatched eventTolLatch Latched |
! ‘
clearLatch
. Dependent
[FredependentState d[I5_IN{Latched))f [DependentState
._/pl GEM(clearLatch) »{ j
. i

© 2019 Bruce Douglass

69

Latch State Pattern Example

70

Latch State Pattern

example

‘ TrafficContral |
p -,
trm(RUNTIME) GEMN{DoneWalking); GEM(clearLatch);
I ¥
‘ Dantialk startyalking Wialk FlaghingDantialk |
‘ - tmeALKTIME)__ ‘
[IZ_IMpYaiting ToWalk))f donevalking
I GEN(startyWalking): ‘ WalkingGreen
‘ Fed goGreen ‘ ‘ Yellowe
& Green
tr(GREEMTIME)
trn(YELLCWYTIME)
Idle PedestrianArtives WaitingToTum ‘
-~ - g |
- clearLatch
. o

© 2019 Bruce Douglass

Transaction State Pattern

Problem
— You want to have an agent mediate the interaction of two objects
Applicability
— The interaction between two objects progresses in a series of steps (states)
— You want to manage multiple such interactions simultaneously
Solution

— Reify the interaction as a separate objects and specify the steps of their interaction as
states in the transaction object

Consequences
— A very flexible means for managing complex interactions
— Can be extended to support multiple clients (see the architectural Rendezvous pattern)

71 © 2019 Bruce Douglass

Transaction State Pattern

Client1 Client2

1 1
Transaction

Transaction
State Pattern

context

Collaborating

Transaction

State Pattern

—p Stepd

i Step2
‘ Idle Engaging | P Disengaging |

¥
¥

72 © 2019 Bruce Douglass

Transaction State Pattern Example

sendhdsg

e
| |

lfcreateDataGramlﬂl;

Transaction
State Pattern

example

Collaborating

| Sending miACK_TIME)
Foount=0; |
donesending/
++count
LnableToSend sl YWyaitingFordack
| nable fo-en | itsSender-=erorUNABLE_TO_SEND); [count<=hAX m‘rEMPTS]

| N ©
}‘JCK Received
Disengagin
ACK_Received (4a9ms

|
This transaction object implements an "At
Most Once” protocol, which does its best
to ensure that a message is reliably send tmACK_REPEAT TIME)

and reliably received. f

73 © 2019 Bruce Douglass

> AGILE SYSTEMS
Bruce Powel Douglass, Ph.D. v @%KNT;MEDESIGN ENGINEERING
| ROBUST SCALABLE ARCHITECTURE o p

Content Services Public Interest Blog What's New Forum About Comments Site Map Geekosphere Member: FOR REAL-TIME SYSTEMS

Real-Time Agile Systems and
Software Development

DESIGN PATTERNS For
EMBEDDED SYSTEMSINC [Riie e et el o>

An Embedded Software Engineering Toolkit

so0er
H sicossis
(s

D o Haro Tive REAL Tive UML

DEVELOPING REAL-TIME \
Systems wirh UML, OBJECTS, THIRD ED]_TIOI\
FRAMEWORKS, AND PATTERNS ADVANCES IN ThE UML FOR

REAL-TIME SySTEMS

REAL-TIME UML
WORKSHOP FOR BRUCE POWEL DOUGLASS e O
EMBEDDED SYSTEMS B

Bruce Powel Douglass

= REAL-TTME AGILITY
Agile Product
Development

You've found yourself on www.bruce-
douglass.com, my web site on all things
real-time and embedded.

Pownel

On this site you will find papers,

presentations, models, forums for questions
/ discussions, and links (lots of links) to areas Harmony aMBSE Deskbook Version 1.01

of interest, such as Agile Model-Based Systems Engineering Best Practices with IBM Rhapsody
Bruce Powel Douglass, Ph.D.

e Developing Embedded Software Stk

g/‘!ode;-D?ven Development for Real- 'B“w'bm“”"‘ﬂn Black Edition:
ime Systems e

Model-Based Systems Engineering

Safety Analysis and Design

Agile Methods for Embedded Software

Agile Methods for Systems Engineering

The Harmony agile Model-Based

Systems Engineering process

m “Am ¢ The Harmony agile Embedded Software

Development process
NTER mE s"E ¢ Models and profiles I've developed and

WEW THE TMRER =uthored

List and links to many of my books.

Rhapsody Only

© Copyright 18M Corporation 2017. Al Rights Reserved Harmony aMBSE Deskbook 1

from the Diecor of Lir Lir

