
© 2019 Bruce Douglass

Design Patterns for Embedded 

Systems in C

Bruce Powel Douglass, Ph.D.

www.bruce-douglass.com

Bruce.Douglass@outlook.com

Twitter: @IronmanBruce

mailto:Bruce.Douglass@outlook.com


© 2019 Bruce Douglass
2

Analysis vs Design

Design is the selection
of one particular solution 

which optimizes the set
of design criteria with 
respect to the relative 

importance of each

Analysis is the identification
& specification of properties 

of a system that are 
essential for correctness



© 2019 Bruce Douglass
3

Harmony ESW Workflows



© 2019 Bruce Douglass
4

Harmony ESW Workflows



© 2019 Bruce Douglass
5

Development Iteration

Produces models, source code, and 

resulting object software in an incremental 

fashion, typically every 1-4 weeks. 



© 2019 Bruce Douglass
6

High-Fidelity Modeling

Produces an “analysis” model and 

code of the software: demonstrably 

functionally correct but not optimized



© 2019 Bruce Douglass
7

Design Workflows

Produces a “design” model and code of the 

software: demonstrably functionally correct 

and optimized against the selected criteria at 

the identified level of abstraction.



© 2019 Bruce Douglass
8

Design Workflows



© 2019 Bruce Douglass
9

Levels of Design

OPTIMIZATION OF INDIVIDUAL

FUNCTIONS, DATA STRUCTURES, AND

CLASSES

COLLABORATION-WIDE

OPTIMIZATION

SYSTEM-WIDE

OPTIMIZATION

FUNCTIONALLY

CORRECT

DETAILED

COLLABORATION

ARCHITECTURE

ANALYSIS



© 2019 Bruce Douglass
10

Common Design Optimization Criteria Drives Pattern Selection

▪ Simplicity

▪ Performance

− Average

− Worst-case

− Predictability

− Schedulability 

▪ Resource usage

− Robustness

− Thread safety

− Minimization of resources (space)

− Minimization of resources (time)

− Deadlock avoidance

▪ Safety

▪ Reliability

▪ Security

▪ Reusability

▪ Portability

▪ Extensibility & evolvability

▪ Maintainability

▪ Time-to-market

▪ Standard conformance



© 2019 Bruce Douglass
11

Design Patterns

▪ Design patterns are 

− generalized solutions to recurring optimization problems

− Parameterized collaborations of objects, where the object roles are the formal 

parameters and the objects that play those roles are the actual parameters when the 

pattern is instantiated

▪ Patterns provide 2 kinds of elements

− “Glue” classes that coordinate the elements work together

− “Formal parameters” classes that are replaced by elements from the analysis model

▪ Important aspects

− Applicability

− What it optimizes

− Solution

− Consequences

• Pros

• Cons

“The classic text”

▪ GoF Categories:

− Creational

− Structural

− Behavioral

▪ Harmony Categories:

− Creational

− Structural

− Behavioral

− State Behavioral

− Distribution

− Dependability

− Deployment

− Concurrency & 

Resource



© 2019 Bruce Douglass
12

Example Analysis Model Collaboration

Optimization Criteria:

1. Ease of adding new TextView (and other) clients

2. Efficient use of bus bandwidth (only send data on bus when necessary)



© 2019 Bruce Douglass
13

Selecting Patterns using Design Tradeoff Analysis



© 2019 Bruce Douglass
14

Design Pattern: Observer Pattern Specification



© 2019 Bruce Douglass
15

Design Pattern: Observer Pattern Instantiation



© 2019 Bruce Douglass
16

Why Use Design Patterns?

▪ Reuse effective design solutions

▪ Provide a more powerful vocabulary of design concepts to developers

▪ Develop “optimal” designs for specific design criteria

▪ Develop more understandable designs 



© 2019 Bruce Douglass
17

How to Apply Design Patterns

▪ Construct a analysis model that verifiably meets the functional requirements

▪ This analysis model need not be optimized but it needs to be verifiably correct

− This includes code generated from that design

▪ If any optimizations are needed, optimize for simplicity



© 2019 Bruce Douglass
18

How to Apply Design Patterns

▪ Identify the top 3-8 criteria (AKA Measures of Effectiveness (MOEs)) you want to optimize

▪ Rank them in order of importance from 1 (lowest) to 10 (highest)

Criterion Importance (1-10)

Execution efficiency 7

Maintainability 5

Run-time flexibility 4

Memory usage 7



© 2019 Bruce Douglass
19

How to Apply Design Patterns

▪ Perform a weighted-sum analysis of the design alternatives

▪ Select the design patterns that best optimize your system overall



© 2019 Bruce Douglass
20

▪ Add in the design pattern, substituting your analysis elements for the parameters of the 

pattern and adding the glue elements to orchestrate their collaboration

▪ This is likely to require some refactoring

How to Apply Design Patterns



© 2019 Bruce Douglass
21

How to Apply Design Patterns

▪ It used to work (remember the “verifiably correct” aspect of the analysis model?)

▪ Verify that it still works

Test case Test architecture Test outcomes Test verdicts



© 2019 Bruce Douglass
22

How to Apply Design Patterns

▪ You applied this design pattern for a reason. Did you achieve your goal?

− Is the performance improvement adequate?

− Is the memory usage small enough?

− Is the system more maintainable?

− Is the run-time flexibility adequate

− Does it meet the safety / security / reliability goals?



© 2019 Bruce Douglass
23

What’s special about Embedded Systems?

▪ Resource constraints

− Most embedded systems are far more highly constrained in available memory, CPU 

cycles, and other resources

− Embedded systems must often interface with custom hardware and create their own 

device drivers

− Small embedded systems run with a bare bones RTOS or no OS at all 

− Most embedded systems are implemented in C

▪ Predictability and timeliness are often crucial to success

▪ Often require high dependability

− Safety

− Reliability

− Security

▪ Design patterns for embedded applications provide reusable effective solutions to these 

concerns



© 2019 Bruce Douglass
24

Design Patterns for Embedded Systems

▪ Many categories are possible for design patterns for embedded systems. We’ll use the 

following

− Accessing hardware

− Concurrency and resource management

− State Machine implementation and usage

− Safety, reliability, and security

− Distribution and communications

− Organization (e.g. layering) of subsystems

− Reuse and product lines



© 2019 Bruce Douglass
25

A note about design patterns in C

▪ Almost all design pattern books assure object oriented implementation in Java, C++, C# or 

similar languages

▪ Three styles for implementing patterns in C

− File-based

• This is “standard” C in which the application source code is organized into pairs of files 

(header and implementation). Not all common patterns are easy to implement in this 

style. This style organizes files around “class” concept but it’s all vanilla C.

− Object-based

• This approach uses structs to represent the classes (instances of which comprise the 

objects) and manually name mangled functions manipulate the data stored in the struct. 

Especially useful when there will multiple instances (variables) of a class or type.

− Object-oriented

• This style is similar to object-based except that the struct itself contains function

pointers as a means to implement polymorphism and virtual functions, something 

required for implementing some patterns (those that require inheritance or 

polymorphism)



© 2019 Bruce Douglass
26

Classes represented as Files in C

▪ This is just a way to graphically 

visualize “standard C”

▪ A file pair (*.h and *.c) lumps 

together 

− Variables

− Event types

− Functions (including state 

machine implementations)

− Types and typedefs

− Preprocessor declarations

− «File» shows that the “class” 

is representing the contents 

of a header/implementation 

file pair

− «Usage» indicates “include 

the header file”

variable

function

event receptor

Header/implementation

file pair



© 2019 Bruce Douglass
27

C Object Based Design (header file)

#ifndef Sensor_H

#define Sensor_H

#include "ADConverter.h"

/* class Sensor */

typedef struct Sensor Sensor;

struct Sensor {

int filterFrequency;

int updateFrequency;

int value;

ADConverter* myADConvert; /* association implemented as ptr */

};

int Sensor_getFilterFrequency(const Sensor* const me);

void Sensor_setFilterFrequency(Sensor* const me, int p_filterFrequency);

int Sensor_getUpdateFrequency(const Sensor* const me);

void Sensor_setUpdateFrequency(Sensor* const me, int p_updateFrequency);

int Sensor_getValue(const Sensor* const me);

Sensor * Sensor_Create(void);

void Sensor_Destroy(Sensor* const me);

#endif

▪ The me pointer points to instance data (supports multiple instances of class)



© 2019 Bruce Douglass
28

C Object Based Design (implementation file)

#include "Sensor.h"

int Sensor_getFilterFrequency(const Sensor* const me) {

return me->filterFrequency;

}

void Sensor_setFilterFrequency(Sensor* const me, int 

p_filterFrequency) {

me->filterFrequency = p_filterFrequency;

}

int Sensor_getUpdateFrequency(const Sensor* const me) {

return me->updateFrequency;

}

void Sensor_setUpdateFrequency(Sensor* const me, int 

p_updateFrequency) {

me->updateFrequency = p_updateFrequency;

}

int Sensor_getValue(const Sensor* const me) {

return me->value;

}

/* Constructor and destructor */

Sensor * Sensor_Create(void) {

Sensor* me = (Sensor *) malloc(sizeof(Sensor));

if(me!=NULL)

{

Sensor_Init(me);

}

return me;

}

void Sensor_Destroy(Sensor* const me) {

if(me!=NULL)

{

Sensor_Cleanup(me);

}

free(me);

}



© 2019 Bruce Douglass
29

C Object Oriented Design (header file)

#ifndef Sensor_H

#define Sensor_H

#include "ADConverter.h"

/* function pointers */

typedef int (*f0ptrInt)(void*);

typedef void (*f1ptrVoid)(void*,int);

/* class Sensor */

typedef struct Sensor Sensor;

struct Sensor {

int filterFrequency;

int updateFrequency;

int value;

ADConverter* myADConvert; /* association implemented as ptr */

f0ptrInt getFilterFreq;  /* ptr to the function w only me ptr argument */

f1ptrVoid setFilterFreq; /* ptr to function with me ptr and int args */

};

int getFilterFrequency(const Sensor* const me);

Void setFilterFrequency(const Sensor* const me, int ff);

Sensor * Sensor_Create(void); /* creates struct and calls init */

Void Sensor_Init(Sensor* const me); /* intializes vars incl. function ptrs */

void Sensor_Destroy(Sensor* const me);

#endif

/* initialize function ptrs in constructor */

void Sensor_Init(Sensor* const me) {

me->getFilterFreq = getFilterFrequency;

me->setFilterFreq = setFilterFrequency;

} 

▪ The function pointers support polymorphism and virtual functions



© 2019 Bruce Douglass
30

Pattern: Hardware Adapter

▪ Abstract

− The Hardware Adapter Pattern is useful when the application requires or uses one 

interface, but the actual hardware provides another. The pattern creates an element that 

converts between the two interfaces.

▪ Problem

− While hardware that performs similar functions tend to have similar interfaces, often the 

information they need and the set of services differ. Rather than rewrite the clients of the 

hardware device to use the provided interface, an adapter is created that provides the 

expected interface to the clients while converting the requests to and from the actual 

hardware interface.

▪ Solution

− Create a class that performs that mapping of the actual interface (provided by the 

Hardware Proxy) and the interface required by the client

▪ Consequences

− Allows reuse of existing hardware proxies in different applications and for different clients 

without rewriting that software.

− This pattern adds a level of indirection and therefore some run-time performance 

overhead



© 2019 Bruce Douglass
31

Pattern: Hardware Adapter



© 2019 Bruce Douglass
32

Example: Hardware Adapter



© 2019 Bruce Douglass
33

Sample Code: Hardware Adapter

int UltimateO2Adapter_gimmeO2Conc(UltimateO2Adapter* const me) {

return int(me->getItsUltimateO2SensorProxy->accessO2Conc()*100);

}

int UltimateO2Adapter_gimmeO2Flow(UltimateO2Adapter* const me) {

double totalFlow;

// convert from liters/hr to cc/min

totalFlow = me->itsUltimateO2SensorProxy->accessGasFlow() * 1000.0/60.0;

// now return the portion of the flow due to oxygen and return it as an integer

return (int)(totalFlow * me->itsUltimateO2SensorProxy->accessO2Conc());

}

int AcmeO2Adapter_gimmeO2Conc(AcmeO2Adapter* const me) {

return me->itsAcmeO2SensorProxy->getO2Conc();

}

int AcmeO2Adapter_gimmeO2Flow(AcmeO2Adapter* const me) {

return (me->itsAcmeO2SensorProxy->getO2Flow()*60)/100;

}

AcmeO2Adapter.c

UltimateO2Adapter.c



© 2019 Bruce Douglass
34

Pattern: Mediator

▪ Abstract

− The Mediator Pattern is particularly useful for managing different hardware elements when their 

behavior must be coordinated in well-defined but complex ways. It is particularly useful for C 

applications because it doesn’t require a lot of specialization (subclassing), which can introduce its 

own complexities into the implementation.

▪ Problem

− Many embedded applications control sets of actuators that must work in concert to achieve the 

desired effect. For example, to achieve a coordinated movement of a multi-joint robot arm, all the 

motors must work together to provide the desired arm movement. Similarly, using reaction wheels or 

thrusters in a spacecraft in three dimensions requires many different such devices acting at precisely 

the right time and with the right amount of force to achieve attitude stabilization.

▪ Solution

− The Mediator Pattern uses a mediator class to coordinate the actions of a set of collaborating 

devices to achieve the desired overall effect. The Mediator class coordinates the control of the set of 

multiple Specific Collaborators. Each Specific Collaborator must be able to contact the Mediator 

when an event of interest occurs.

▪ Consequences

− This pattern creates a mediator that coordinates the set of collaborating actuators but without 

requiring direct coupling of those devices. This greatly simplifies the overall design by minimizing the 

points of coupling and encapsulating the coordination within a single element.

− Since many embedded systems must react with high time fidelity, delays between the actions may 

result in unstable or undesirable effects. It is important that the mediator class can react within those 

time constraints.



© 2019 Bruce Douglass
35

Pattern: Mediator



© 2019 Bruce Douglass
36

Example: Mediator



© 2019 Bruce Douglass
37

Example: Mediator



© 2019 Bruce Douglass
38

Source Code: Mediator (RobotArmManager.h)

#ifdef ROBOTARMMANAGER_H

#define ROBOTARMMANAHER_H

#include "GraspingManipulator.h"

#include "RotatingArmJoint.h"

#include "SlidingArmJoint.h"

#include "Action.h"

/* class RobotArmManager */

typedef struct RobotArmManager RobotArmManager;

struct RobotArmManager {

unsigned int currentStep;

unsigned int nSteps;

struct GraspingManipulator* itsGraspingManipulator;

struct RotatingArmJoint *itsRotatingArmJoint[4];

struct SlidingArmJoint *itsSlidingArmJoint[2];

struct Action *itsAction[100]; /* set of actions to perform to execute the planned trajectory */

int status;

};

/* Constructors and destructors:*/

void RobotArmManager_Init(RobotArmManager* const me);

void RobotArmManager_Cleanup(RobotArmManager* const me);

/* Operations */

void RobotArmManager_computeTrajectory(RobotArmManager* const me, int x, int y, int z, int t);

int RobotArmManager_executeStep(RobotArmManager* const me);

int RobotArmManager_graspAt(RobotArmManager* const me, int x, int y, int z, int t);

int RobotArmManager_zero(RobotArmManager* const me);

struct GraspingManipulator*

RobotArmManager_getItsGraspingManipulator(const RobotArmManager* const me);



© 2019 Bruce Douglass
39

Source Code: Mediator (Action.h)

#ifndef Action_H

#define Action_H

/* class Action */

typedef struct Action Action;

struct Action {

int manipulatorForce; /* attribute manipulatorForce */

int manipulatorOpen; /* attribute manipulatorOpen */

int rotatingArmJoint1; /* attribute rotatingArmJoint1 */

int rotatingArmJoint2; /* attribute rotatingArmJoint2 */

int rotatingArmJoint3; /* attribute rotatingArmJoint3 */

int rotatingArmJoint4; /* attribute rotatingArmJoint4 */

int slidingArmJoint1; /* attribute slidingArmJoint1 */

int slidingArmJoint2; /* attribute slidingArmJoint2 */

};

/* Constructors and destructors */

void Action_Init(Action* const me);

void Action_Cleanup(Action* const me);

Action * Action_Create(void);

void Action_Destroy(Action* const me);

#endif



© 2019 Bruce Douglass
40

Source Code: Mediator (RobotArmManager.c graspAt())

/* operation graspAt(x,y,z,t) is the main function called by clients of the RobotArmManager. This operation: 

1. zeros the servos 

2. 2. computes the trajectory with a call to computeTrajectory()

3. executes each step in the constructed action list

*/

int RobotArmManager_graspAt(RobotArmManager* const me, int x, int y, int z, int t) {

me->currentStep = 1;

me->nSteps = 0;

RobotArmManager_zero(me);

RobotArmManager_computeTrajectory(me,x,y,z,t); /* updates nSteps and list of actions */

if ( me->nSteps == 0 ) {

me->status = -1;

}

else {

do {

me->currentStep++;

me->status = RobotArmManager_executeStep(me);

}

while (me->status == 0 && me->currentStep < me->nSteps);

}

return me->status;

} /* end graspAt() */



© 2019 Bruce Douglass
41

Source Code: Mediator (RobotArmManager.c executeStep())

#include "RobotArmManager.h“

/* other functions omitted */ 

/* operation executeStep() This operation executes a single step in the chain of actions by executing all of the 

commands within the current action */

int RobotArmManager_executeStep(RobotArmManager* const me) {

int actionValue = 0;

int step = me->currentStep;

int status = 0;

if (me->itsAction[step]) {

actionValue = me->itsAction[step]->rotatingArmJoint1;

status = RotatingArmJoint_rotate(me->itsRotatingArmJoint[0],actionValue);

if (status) return status;

actionValue = me->itsAction[step]->rotatingArmJoint2;

status = RotatingArmJoint_rotate(me->itsRotatingArmJoint[1],actionValue);

if (status) return status;

actionValue = me->itsAction[step]->rotatingArmJoint3;

status = RotatingArmJoint_rotate(me->itsRotatingArmJoint[2],actionValue);

if (status) return status;

actionValue = me->itsAction[step]->rotatingArmJoint4;

status = RotatingArmJoint_rotate(me->itsRotatingArmJoint[3],actionValue);

status = GraspingManipulator_setMaxForce(me->itsGraspingManipulator, actionValue);



© 2019 Bruce Douglass
42

Source Code: Mediator (RobotArmManager.c executeStep())

if (status) return status;

actionValue = me->itsAction[step]->slidingArmJoint1;

status = SlidingArmJoint_setLength(me->itsSlidingArmJoint[0],actionValue);

if (status) return status;

actionValue = me->itsAction[step]->rotatingArmJoint2;

status = SlidingArmJoint_setLength(me->itsSlidingArmJoint[0],actionValue);

if (status) return status;

actionValue = me->itsAction[step]->manipulatorForce;

if (status) return status;

if (me->itsAction[step]->manipulatorOpen)

status = GraspingManipulator_open(me->itsGraspingManipulator);

else

status = GraspingManipulator_close(me->itsGraspingManipulator);

};

return status;

} /* end executeStep() */



© 2019 Bruce Douglass
43

Key Harmony ESW 
Architecture Views

Distribution

Deployment

Dependability

Concurrency 
and Resource

Subsystem and 
Component

Five Key Views of Architecture

Subsystem & Component

Identification of large pieces 

of the system, their 

responsibilities and their 

interfaces

Concurrency & Resource

Identification of concurrency units, 

how semantic elements map to 

them, how they are scheduled & 

share resources

Deployment

Identifies the engineering disciplines 

involved, allocates system 

responsibilities to those disciplines and 

defines interfaces that cross those 

boundaries

Distribution

Focuses on the distribution of 

services and semantic elements 

across different processing nodes 

and identifies how these elements 

collaborate

Dependability

Focuses identification, isolation and 

correction of faults as the system runs 

through management of redundancy. 

Includes safety, reliability, & security



© 2019 Bruce Douglass
44

Key Harmony ESW 
Architecture Views

Distribution

Deployment

Dependability

Concurrency 
and Resource

Subsystem and 
Component

Five Key Views of Architecture

Key Concept:

The system architecture is a

integration of patterns from 

each key architectural view



© 2019 Bruce Douglass
45

Concurrency Architecture Patterns



© 2019 Bruce Douglass
46

Task Diagram

▪ A task diagram is a class diagram that shows only model elements related to the 

concurrency model

− Active objects

− Semaphore objects

− Message and data queues

− Constraints and tagged values

▪ May use opaque or transparent interfaces



© 2019 Bruce Douglass
47

Task Diagram



© 2019 Bruce Douglass
48

Task Scheduling Patterns

▪ Priority-based preemptive
− Highest priority task not blocked runs preferentially

− May be static (priority assigned at design) or dynamic (priority assigned at run-time)

▪ Non-preemptive
− Round robin executes tasks in turn

− May require “cooperative multitasking”

▪ Time Driven Multiplexed Architecture (TDMA)
− Each task is given a specific time-slice in a round-robin fashion

▪ Cyclic executive
− Run a set sequence in a particular order

− Each task runs to completion

▪ Interrupt
− No scheduling per se, just a set of interrupt handlers

− Requires that handlers are short (relative to arrival frequency) and atomic



© 2019 Bruce Douglass
49

Cyclic Executive Pattern

▪ Problem

− Need for a simple means to execute a known, finite set of task, or

− You want to simplify safety certification

▪ Solution

− Have each task run-to-completion

− Use an executive to order the task execution

▪ Consequences

− Very simple implementation

− Demonstrably suboptimal in terms of time to respond to incoming events

− Applies best to simple task sets that run to completion

− May require tuning



© 2019 Bruce Douglass
50

Cyclic Executive Pattern

This timer is only needed for the Timed Cyclic Executive variant

which starts the cycle on a specific time period



© 2019 Bruce Douglass
51

Cyclic Executive Pattern Example



© 2019 Bruce Douglass
52

Interrupt Pattern

▪ Problem

− You want to process events from external sources, including hardware

▪ Applicability

− Events come at non-predictable intervals and polling would be ineffective

▪ Solution

− Write a device driver that in its constructor inserts the address of an interrupt function 

into the CPU interrupt vector table and in its destructor restores the previous vector

− Care must be taken in C++ (use static functions)

▪ Consequences

− Easy implementation

− Highly responsive to incoming events

− Interrupt handles must be short or high frequency events may be lost

− Care must be taken to avoid deadlock when ISR updates a protected shared resource



© 2019 Bruce Douglass
53

Interrupt Pattern



© 2019 Bruce Douglass
54

Interrupt Pattern Example



© 2019 Bruce Douglass
55

Static Priority Pattern

▪ Problem

− In a multitasking environment, need a set of rules to govern how ready-to-run threads 

are scheduled

▪ Solution

− Use a static priority for each task and implement the rule that the highest priority task 

ready to run preempts and runs preferentially



© 2019 Bruce Douglass
56

Static Priority Patten

▪ Consequences

− Supported by many RTOSes

− Can be statically analyzed for schedulability (e.g. RMA analysis)

− Easy to annotate UML thread model with the appropriate properties

• Priority

• Worst Case execution time

• Blocking time, etc.

− Scales to many threads well

− RMS is the most common instantiation

• RMS is OPTIMAL

• RMS is STABLE

− Naïve implementation can lead to unbounded priority inversion



© 2019 Bruce Douglass
57

Static Priority Pattern

Usually 

Provided by 

RTOS



© 2019 Bruce Douglass
58

Static Priority Example



© 2019 Bruce Douglass
59

Safety and Reliability Patterns

▪ Isolation Pattern

▪ CRC Pattern

▪ Smart Data Pattern

▪ Protected Single Channel Pattern

▪ Homogeneous Redundancy Pattern

▪ Heterogeneous Redundancy Pattern

▪ Triple Modular Redundancy Pattern

▪ Monitor-Actuator Pattern



© 2019 Bruce Douglass
60

CRC Pattern

▪ Problem

− This pattern addresses the problem that variables may be corrupted from a variety of 

causes such as environmental factors (such as EMI, heat, and radiation), hardware 

faults (such as power fluctuation, memory cell faults, and address line shorts), or 

software faults (other software erroneously modifying memory). This pattern addresses 

the problem of data corruption in large data sets. 

▪ Solution

− The pattern adds cyclic redundancy checks to identify data corruption and trigger 

appropriate action when it occurs

▪ Consequences

− CRC uses a small amount of memory for strong bit-corruption identification

− Table-driven implementations use additional block of memory to hold table but are 

computationally efficient



© 2019 Bruce Douglass
61

CRC Pattern



© 2019 Bruce Douglass
62

CRC Pattern Example



© 2019 Bruce Douglass
63

Smart Data Pattern

▪ Problem

− The problem this pattern addresses is to build functions and data types that essentially 

check themselves and provide error detection means that cannot be easily ignored. 

▪ Solution 

− The key concepts of the pattern are to 

• Build self-checking types whenever possible 

• Check incoming parameter values for appropriate range checking 

• Check consistency and reasonableness among one or a set of parameters. 

▪ Consequences

− The downside for using smart data types is the performance overhead for executing the 

operations. 

− The upside is that the data is self-protecting and provides automatic checking when the 

data is set. 

− It is also possible for the programmers to avoid using the functions and access the 

values directly if they are so inclined, defeating the purpose of the smart data type. 



© 2019 Bruce Douglass
64

Smart Data Pattern



© 2019 Bruce Douglass
65

Smart Data Pattern Example



© 2019 Bruce Douglass
66

State Behavioral Patterns



© 2019 Bruce Douglass
67

State Patterns

▪ Latch State Pattern

▪ Polling State Pattern

▪ Queued Data State Pattern

▪ Any State Pattern

▪ Transaction State Pattern

▪ Counting Barrier State Pattern

▪ Random State Pattern

▪ Null State Pattern

▪ Watchdog State Pattern

▪ Retriggerable Counter State Pattern



© 2019 Bruce Douglass
68

Latch State Pattern

▪ Problem

− You want to remember that an event has occurred so that you can process it later

▪ Applicability

− When the event can come at any time, but the object may not be able to react to it 

except at specific points

− When you want to remember that a state has been visited and use that information later

▪ Solution

− Create a “latch” state to remember the arrival of the event of interest and clear the latch 

when the object has consumed it

▪ Consequences

− It is a lightweight means to synchronize to independent behaviors when a latching 

condition is required. 

− Other kinds of latches may be constructed. For example, an inhibitory latch (a latch 

which, when active, inhibits the progress of an independent activity) can be easily 

constructed by applying a NOT operator (e.g. [!IN(Latched))]) within the guard condition. 



© 2019 Bruce Douglass
69

Latch State Pattern



© 2019 Bruce Douglass
70

Latch State Pattern Example



© 2019 Bruce Douglass
71

Transaction State Pattern

▪ Problem

− You want to have an agent mediate the interaction of two objects

▪ Applicability

− The interaction between two objects progresses in a series of steps (states)

− You want to manage multiple such interactions simultaneously

▪ Solution

− Reify the interaction as a separate objects and specify the steps of their interaction as 

states in the transaction object

▪ Consequences

− A very flexible means for managing complex interactions

− Can be extended to support multiple clients (see the architectural Rendezvous pattern)



© 2019 Bruce Douglass
72

Transaction State Pattern



© 2019 Bruce Douglass
73

Transaction State Pattern Example



© 2019 Bruce Douglass
74


